© Copyright Statement

All rights reserved. All material in this document is, unless otherwise stated, the property of **FPC International, Inc**. Copyright and other intellectual property laws protect these materials. Reproduction or retransmission of the materials, in whole or in part, in any manner, without the prior written consent of the copyright holder, is a violation of copyright law.

MACMAHON CONTRACTORS FUEL EFFICIENCY TRIAL GIRALAMBONE OPERATIONS

November, 1996

Report prepared by:

R A Platt Fuel Technology Pty Ltd 6a Nairn Street (PO Box 1271) FREMANTLE WA 6160

Tel (09) 335 6899 Fax (09) 430 5403 E-Mail 100251.2466@Compuserve.com

ACN 063 561 151

CONTENTS

Executive Summary	Page 1
Test Procedure	Page 1
Test Results	Page 3
Student t-Test	Page 5
Conclusion	Page 6
Photographs	Page 7 & 8

Appendices

Test Worksheets	Appendix "A"
Caterpillar Air Temperature Correction Table	Appendix " <i>B</i> "
Student's t-Test	Appendix "C"

EXECUTIVE SUMMARY

Fuel Technology Pty Ltd initiated trials with F K Kanny & Son in Western Australia mid 1987. Initial carbon balance trials were conducted on two low loader prime movers. Following the success of these trials in reducing fuel consumption under a given load condition, trials were conducted at the Golden Valley minesite in Western Australia on a fleet of Caterpillar 773 dump trucks which showed a 7.4% reduction in fuel consumption following FTC treatment of fuel.

A number of further tests were conducted at Kanny then MacMahon contract sites, namely Eneabba, Orebody 25, Alcoa, Youanmi and Kurara.

The fuel at all MacMahon contract minesites in Western Australia is FTC treated.

Following discussion with MacMahon's Eastern Region Maintenance Management, agreement was reached to evaluate the performance of FTC in a Caterpillar 777C at Giralambone minesite employing the engineering standard Specific Fuel Consumption test procedure.

The baseline data collection was initiated on 11th September, 1996 on truck number 2287, operating in the Murrawombie pit. This pit was selected because of its maturity and the deep haul out. Mining in this pit is intermittent and a return for treated tests was delayed until 14th November, 1996.

The reduction in fuel consumption measured following FTC treatment was 7.6% following correction for variation in inlet air temperature.

TEST PROCEDURE

The purpose of the Haul Truck Volumetric Fuel Measurement test is to accurately measure the actual volume of fuel consumed corrected to mass in kilograms against the work done, tonnes hauled.

A start point at a given distance from base of pit ramp and a finish point at the top of the ramp was marked with sighting posts. The distance between the two, namely 947 metres, was measured by a surveyors wheel and this distance used as the test cycle.

Flow transducers fitted with thermocouple probes were fitted to Dump Truck No. 2287 fuel tank outlet and inlet pipework (*Photograph No. 1*).

These transducers, calibrated to \pm 0.25% by a NATA Certified Laboratory, were then coupled to a Minitrol totaliser mounted in the cab (*Photograph No. 2*).

Because the temperature of engine return fuel is considerably higher than inlet fuel together with the fact that the fuel temperature continues to rise during the working cycle which results in density variations, the fuel temperatures at each flow transducer was measured via a Fluke dual readout digital thermometer also mounted in the cab.

Prior to the test commencing a fuel sample was drawn from the test truck and density measured at observed temperature. Density was then corrected to industry standard of 15°C using the Institute of Petroleum Density Correction Table, Volume VIII, Tables 53B and 54B.

Following loading of truck 2287 for each cycle and allowing the load monitor to register, load in kilograms (kg) was recorded from the truck's onboard Payload Monitoring System (*Photograph No. 3*). Upon arrival at pit ramp marker the test truck stopped and the Minitrol totaliser and stop watch were zeroed. At signal "GO" the driver accelerated and the test engineer activated the stop watch and Minitrol totaliser.

To avoid any driver variables the test truck was driven at full throttle over the pit haul ramp test circuit which allowed the test truck to automatically change from first to second gear only. Fuel temperatures were recorded and upon arrival at the ramp top marker the stop watch and Minitrol were stopped and readings recorded.

Tests were conducted throughout the day on all available runs.

TEST RESULTS CATERPILLAR 777C DUMP TRUCK; MURRAWOMBIE PIT

FTC-1 treated and untreated fuel consumption has been calculated in kilograms from the litres consumed, corrected for fuel temperatures and density. Kilograms of fuel per tonne of ore moved has then been calculated and the arithmetic mean determined. As there was a substantial average ambient temperature difference from baseline at 14°C and treated at 33.5°C, Caterpillar correction factors have been applied to the data which result in a change of efficiency. A copy of Correction Table is included in Appendix "B".

SPECIFIC	; FUEL CC	INSUMPT	ION T	RUCH	(TRIAL								-				
Customer	:	Macmahc	ın Gira	Jamb	one								Fuel Sar	nple	Density	Temp Deg C	1
Truck No:		2287	l -		Eng, Hrs	7267	£.	Ambient Ter	mp;	14 Deg.	C (57.2F)			0.845	25.3	
Date:		11/09/96	,					Correction F	actor	0.983			Correcte	d	0.852	15	
UNTREAT	red															· · · · · · · · · · · · · · · · · · ·	1
Rnn No	Time	Load kg	Haul	Time	Haul Time	Fuel	(Lt)	Fuel (Lt)	Fuel	Temp	Der	asity	Fuel	(log)	Fuel (kg)	Fuel (kg)	Correction
	L		Mins	Secs	Mins	h	Out	Consumed	La	Out	In	Out	In	Out	Consumed	Per Tonne	For Amb;
1	7.10	106000	5	45	5.75	\$1.02	65.59	15.43	21.7	35.8	0.848	0.838	68.66	54.94	13.73	0.1295	0.1317
2	7.3	112000	5	04	5.07	\$6.98	70.75	16.23	26.1	39.5	0.844	0.835	73.45	59.07	14.38	0.1284	0.1306
3	8.4	119000	6	03	6.05	\$6.97	70.61	16.36	36.7	46.8	0.837	0.830	72.79	58.59	14.19	0.1193	0.1213
4	9.00	118000	6	06	6.10	\$7.37	70.84	16.53	39.4	49.2	0.835	0.828	72.95	58.66	14.29	0.1211	0.1232
5	10.30	114000	6	03	6.05	87	70.36	16.64	47.0	52.4	0.830	0.826	72.18	58.10	14.07	0.1234	0.1256
6	10.55	111000	5	45	5.75	81.1	65.32	15.78	48.2	54.4	0.829	0.824	67.22	53.85	13.37	0.1204	0.1225
7	11.45	114000	6	04	6.07	\$7.2	70.59	16.61	49.1	56.1	0.828	0.823	72.21	58.11	14.10	0.1237	0.1258
8	12.45	110000	5	43	5.72	\$1.24	65.83	15.41	35.5	46.6	0.838	0.830	68.06	54.63	13.43	0.1221	0.1242
9	1.05	124000	6	15	6.25	89.11	72.37	16.74	38.2	52.7	0.836	0.826	74.49	59.75	14.74	0.1189	0.1209
10	1.25	123000	6	15	6.25	89.19	72.44	16.75	40.9	52.3	0.834	0.826	74.38	59.83	14.55	0.1183	0.1203
11	1.45	127000	6	13	6.22	88.54	71.83	16.71	44.0	54.3	0.832	0.825	73.65	59.22	14.42	0.1136	0.1155
12	2.05	111000	5	45	5.75	82.14	66.70	15.44	46.5	55.1	0.830	0.824	68.18	54.95	13.22	0.1191	0.1212
13	2.25	115000	6	11	6.18	88,54	71.83	16.71	48.3	55.7	0.829	0.824	73.37	59.15	14.22	0.1237	0.1258
14	2.50	102000	5	53	5.88	\$3.19	67.13	16.06	50.0	58.6	0.828	0.821	68.84	55.14	13.70	0.1343	0.1366
15	3.10	123000	6	09	6.15	\$7.75	71.01	16.74	51.3	58.7	0.827	0.821	72.53	58.33	14.21	0.1155	0.1175
16	3.40	\$1000	4	57	4.95	70.93	57.53	13.40	52.7	57.6	0.826	0.822	58.56	47.30	11.26	0.1391	0.1415
								<u> </u>									í – – – – – – – – – – – – – – – – – – –
Mean		113125			5.89			16.10							13.867	0.1231	0.1253
Std Dev		10941.51			0.3913			0.8779							0.8204	0.0067	0.0069
C.V		9.7%			6.6%			5.5%	1		1				5.9%	5.5%	5.5%

													Fuel Sam	nple	Density	Temp Deg C	1
Date:		14/11/96			Eng; Hrs	7540		Ambient Ter	np;	33.5 Dq	g. C (92.4	F)			0.839	32.8	1
								Correction F	actor	1.013			Correcte	d	0.851	15	l i
TREATE	D																1
Run No	Time	Load kg	Haul	Time	Haul Time	Fuel	(Lt)	Fuel (Lt)	Fuel	Temp	Deat	sity	Fuel	(kg)	Fuel (kg)	Fuel (kg)	Correction
			Mins	Secs	Mins	In	Out	Consumed	In	Out	In	Out	In	Out	Consumed	Per Tonne	For Amb;
1	11.00	97000	5	36	5.60	78.10	63.43	14.67	60.5	65.9	0.819	0.816	64.00	51.73	12.26	0.1264	0.1248
2	11.25	100000	5	<i>,</i> 36	5.60	78.38	63.18	15.20	61.2	65.7	0.819	0.816	64.19	51.54	12.65	0.1265	0.1249
3	11.5	114000	5	, 45	5.75	80.54	64.37	16.17	62.0	66.0	0.818	0.816	65.91	52.49	13.41	0.1177	0.1161
4	1.10	116000	5	, 44	5.73	\$0.36	64.83	15.53	49.4	57.4	0.827	0.822	66.47	53.26	13.21	0.1139	0.1124
5	1.50	102000	5	31	5.52	77.46	62.65	14.81	57.4	61.5	0.822	0.819	63.64	51.29	12.35	0.1211	0.1195
6	2.10	112000	5	, 44	5.73	\$0.19	64.70	15.49	55.6	62.2	0.823	0.818	65.98	52.94	13.04	0.1165	0.1150
7	2.35	125000	6	17	6.28	88.73	71.72	17.01	56.8	63.2	0.822	0.818	72.94	58.63	14.30	0.1144	0.1130
8	2.55	116000	6	11	6.18	\$7.37	71.61	15.76	58.5	64.8	0.821	0.816	71.71	58.46	13.26	0.1143	0.1128
9	3.20	112000	5	49	5.82	88.03	72.57	15.46	59.8	66.0	0.\$20	0.816	72.18	59.18	12.99	0.1160	0.1145
10	3.40	112000	6	05	6.08	\$6.67	71.15	15.52	61.3	67.2	0.819	0.815	70.97	57.96	13.01	0.1161	0.1146
11	4.00	130000	6	19	6.32	88.51	71.32	17.19	62.3	67.5	0.818	0.814	72.41	58.08	14.33	0.1102	0.1088
12	4.20	121000	6	06	6.10	\$6.64	70.03	16.61	63.2	67.8	0.818	0.814	70.83	57.02	13.81	0.1141	0.1127
Mean		113083			5.89	\square		15.79							13.219	0.1173	0.1158
Std Dev		9\$39.238			0.2838	· · · · ·	· · · · · · · · · · · · · · · · · · ·	0.8072							0.6687	0.0050	0.0049
C.V		8.7%			4.8%			5.1%							5.1%	4.3%	4.3%
										2							
% CHANG	3E:	Load kg			Haul Time			Fuel (Lt)			1				Fuel (kg)	Fuel (kg)	Fuel (kg)
Treated-	Baseline		1		Mins	i		Consumed	i						Consumed	Per Tonne	Per Tonne
Bas	eline	0.0%			0.1%		6	-1.9%							-4.7%	-4.8%	-7.6%

Specific Fuel Consumption Truck Test

Graph 2 plots the truck's fuel efficiency over each test phase when Caterpillar correction factors are applied.

FUEL EFFICIENCY CHANGE

	Fuel Efficiency Kg/Tonne									
	Uncorrected for inlet air temp	Corrected for inlet air temp.								
Untreated	0.1231	0.1244								
FTC-1 Treated	0.1173	0.1155								
% CHANGE	- 4.8	- 7.6								

STUDENT'S t-TEST

To prove the statistical significance of the difference in means between baseline and treated test a Student's t-Test was performed.

Formula:	t	=	x ₁ - x ₂					
			$\overline{(n_1 - l)}$	$S_1^2 + (n_2 - 1)$	S ₂ ²	1+1		
			(n ₁ - n ₂	- 2)	$n_1 + n_2$			
Hypothesis:	H ₀ :	U1 -	$U_2 = 0$					
where:-	H ₁ :	U ₁ -	$U_1 - U_2 \neq 0$					
	Baseline $x_1 = 0.1253$ $n_1 = 16$ $S_1 = 0.00686$		53 6861369	Treated $x_2 = 0.1158$ $n_2 = 12$ $S_2 = 0.00493$	4616			
	Conf	idence	Level	=	99%			
	α			=	0.005			
	degre	es of fi	reedom		26			
	Critic	cal t val	ue	=	2.779			
	t			=	-4.06			

Since -4.06 is outside the range +/-2.779 we reject H₀ and accept H₁ and conclude that the difference between truck efficiency means is significant at a 99% confidence level.

T-test spreadsheet is included in the appendices.

CONCLUSION

Fuel efficiency studies applied at MacMahon Contractors Giralambone site provide clear evidence of reductions in fuel consumption following the introduction of Fuel Technology's Combustion Catalyst, FTC-1.

This efficiency gain measured in a normal working environment correlates well with previous tests conducted for MacMahon Contractors by the "Carbon Balance" AS2077 method.

The measured average reduction in kgs fuel per tonne of ore moved represents an 7.6% efficiency gain following the introduction of FTC-1.

The Student t-Test confirms that the difference between untreated and treated tests are significant at a 99% confidence level.

Photograph No. 1 - MacNaught Model M5 flow transducers installed on the test truck

Photograph No. 2 - The in cab work station, Minitrol rate meter, Fluke digital thermometer and quartz crystal stop watch.

Photograph No. 3 -Truck on board payload measurement system.

Appendix "A"

TEST WORKSHEETS

•

Fari Iscianogg

FUEL CONSUMPTION TRIALS

Customer	MACMAHON
Location	GIRILAMBONE
Engine Hours	7267
Baseline/Treated	11 - 9 - 96
Circuit Distance	947 m

HELD IN 2nd GEAR.

Equipment Make/Model Unit No. Fuel Density Fuel Density corrected @ 15°C Ambient Temp

.

CAT 777	
2287	
- 845 @ 25.3°C	
0.852	
Start 10 ° Finish	15-

(1_

Rm	Time	Load	Haul Time	Fu	Fnel		Fuel		Density		Fuel		Fuel
No		Kg	Min/See	Lit	res	Cons	Tem	р °С			K	g	Cons Kg
				<u>IN</u>	<u>(1) 17 (</u>		LIN'	0.000	R	0,000	<u></u>	0.000	(IN-015)
/	7.10	106000	5.45	81.02	65.59	15.43	21.7	35.8					
2	7.30	112000	5.04	86.98	70.75	16.23	26.1	39.5					
3	8.40	119000	6.03	86.97	70.61	16.36	36.7	46.8					
4	9.00	118000	6.06	87.37	70.84	16.53	J9 .4	49.2					
5	10.30	114000	603	87.00	70.36	16.64	47	52.4					
6	10.55	11000	5.45	81.1	65.32	15.78	48.2	54.4					
7	11:45	114000	6.04	87.2	70.59	16.61	49.1	56.1					
8	12:45	10000	5.43	81.24	65.83	15.41	35.5	46.6					
9	1.05	124000	6.15	89.11	72 37	16.74	38.2	52.7					
10	1.25	123000	6.15	89.19	72.44	16.75	40.9	52.3					
11	1:45	127000	6.13	88.54	71.83	16.71	44	54.3					
12	2.05	111000	5.45	82.14	6670	15.44	46.5	55-1					
13	2.25	115000	.6.11	88.54	71.83	16.71	48.3	55.7					
14	2.50	102000	5 53	83.19	67.13	16.06	50	55.6					
15	3.10	123000	6.09	87.75	71.01	16.74	51.3	58.7					

4

1

FOONOTE VI O

1

FUEL CONSUMPTION TRIALS

Customer	mpen	Equipment Make/Model		COT 777C
Location	GIRILAM Bonnie	Unit No.	•	2287
Engine Hours	7267	Fuel Density		<u> </u>
Baseline/ Treated	11-9-96	Fuel Density corrected @ 15°C		
Circuit Distance	947 M	Ambient Temp		Start Finish

Run No	Time	Load Kg	Haul Time Min/See	Fu Lit	el res	Fuel L Cons	Ft Tem	iel p °C	Den	sity	Fh K	rel g	Fuel Cons Kg
				IN	0192		IN	OUI	R	OUT	IN	OUT	(IN-OUT)
16	3-40	81000	4.57	70 93	57.53	13.4	52.7	57.6					

FOONICTO VI O

Fait Fait Facture

1

FUEL CONSUMPTION TRIALS

Customer	12 P. C. Mark
Location	list is more lit
Engine Hours	7540
Baseline/Treated	4 4 96
Circuit Distance	9K7 N1

Equipment Make/Model Unit No. Fuel Density Fuel Density corrected @ 15°C Ambient Temp

Run	Time	Load	Haul Time	Fu	el	Fuel L	Ei	ıel	Den	sity	F	ıel	Fuel
No		Kg	Min/Sec	Litres		Cons	Temp °C				Kg		Cons Kg
				<u></u>	<u>. ()</u>			0.000.00		<u>(910))</u>	11.	<u>(9)(7)</u>	(IN-0100)
1	11.00	97	5.36	78.1	63.43	14.67	60.5	459					
2	11.25-	100'	5 36	78 38	63.18	15.20	612	657					
	11 50	114	5.45	80.54	64:57	16.17	62	66					
4	1.10	116	5.44	80.36	64.83	15.53	494	57.4					
5	1.50	102	5 31	77.46	62.45	14.81	57.4	61.5					
6	210	112	5.44	80.19	64-7	15:49	55.6	62.2					
7	2 35	125	6-17	88.73	7172	10.01	56 8	63.2					
8	2 55	116	6. 11	87.37	71.61	15.76	58.5	64.8					
9	3.20	112	5.49	88.03	72.57	15.46	59.8	66					
10	3.40	112	6.05	86.67	71.15	15.52	613	67.2					
11	4.00	130	6.19	88.51	71.32	17.19	62.3	67.5					
12	4.20	121	6.06	86.64	70.03	16.61	63.2	67.8					

FOONIGTD VI C

Appendix "B"

CATERPILLAR AIR TEMPERATURE CORRECTION TABLE

•

Correction Factors

}

As explained in the first section of this guide, engine power will be affected when the conditions in which an engine is operated or tested are different than the Standard Test Conditions. When you test an engine for a performance complaint, it is important that test conditions be evaluated to determine their possible effect on power. This can be accomplished in two ways by using correction factors. A percentage effect can be calculated, or if wheel horsepower is measured, a corrected wheel horsepower can be calculated. In either case, the use of correction factors will provide you specific infor mation to help explain to the customer how the operating environment of the engine affects its power.

In simple form, Standard Test Conditions are:

- · Fuel Density: 35 API corrected to 60°F
- Fuel Temperature: 85°F measured at the secondary fuel filler
- Air Pressure: 29.61 inches of mercury
- Air Temperature: 77°F at turbo intake for JWAC (110°F in the inlet manifold for ATAAC)

As part of a loaded engine test, these variable must be measured at each last speed for proper evaluation of test conditions. The test conditions may change enough during the test to affect power at a given test speed.

A Correction Factor Chart is provided for each variable to determine the individual correction factors. The individual correction factors are then multiplied together to obtain a Total Correction Factor. A Correction Factor Worksheet, procedure number 2000R is provided to simplify the calculation of the Total Correction Factor for each test speed. The Total Correction Factor for each test speed is then easily converted to represent a percentage effect on power or multiplied by the Observed Wheel Horsepower to determine Corrected Wheel Horsepower. An example of the use of Correction Factors is given below:

Example:

The engine rating is 400 HP at 2100 RPM with jacket water aftercooler (JWAC).

This equals a 21 HP net effect on power because of a difference in Actual Test Conditions versus Standard Tests Conditions. If the engine was tested on a chassis dynamometer with Standard Test Conditions, the Observed Wheel Horsepower at 2100 RPM would have been 341 Wheel Horsepower and the Total Correction Factor would have been 1.00.

The Total Correction Factor can also be a number less than 1.00. To determine the percentage effect on power, subtract the Total Correction Factor from 1 0(: and multiply by 100. Corrected Wheel Horsepower is still calculated by multiplying the Observed Wheel Horsepower by the Total Correction Factor, When the Total Correction Factor is less than 1.00, the actual test/operating conditions cause the power to be better than the power at standard conditions. This is our reason why a complete Customer Problem Description obtained during the Customer Interview is so impor tant. Power can vary substantially from a cold day to a warm day or from one tank fill to the next. The Custom er Problem Description asks: Under what conditions the problem exists? Your knowledge of Correction Factors will help you formulate the type of questions to ask during the Customer Interview.

NOTE

Correction Factor charts for both Heavy Duty and Medium Duty Engines have been included in this guide.

TCF = Total Correction Factor

CORRECTION FACTORS FOR HEAVY DUTY ENGINES

and the second bright of the second second

INLET MANIFOLD AIR TEMPERATURE' CORRECTION FACTORS FOR ATAAC ENGINES							
INLET MANIFOLD TEMPERATURE	CORRECTION FACTOR						
45	.957						
50	961						
55	.964						
60	967						
65	.970						
70	.974						
75	.977						
80	.980						
85	.984						
90	.987						
D5	.990						
100	993						
105	.997						
1102	1.000						
115	1.003						
120	1.007						
125	1.010						
130	1.013						
135	1.016						
140	1.020						
145	1.023						
150	1 026						

INTAKE AIR TEMPERATURE CORRECTION FACTORS FOR JWAC ENGINES!					
INTAKE AIR TEMPERATURE °F	CORRECTION FACTOR				
.10	923				
-5	928				
0	933				
5	937				
10	942				
15	946				
20	951				
25	955				
30	.960				
35	964				
40	968				
45	.973				
50	.977				
55	981				
60	986				
65	990				
70	639				
75	898				
77?	1 (),0,0				
80	1 003				
H5	1.007				
90	1 011				
95	1 015				
100	1 019				
105	1.023				
110	1.()27				
115	1 031				
120	1 035				
Mazzura baturan Bit classor and	· · ······························				

ىيى ئۆلىمە بار مەممارىيا بىڭىغەلەت خاپ بېتىدىدىكىتىدا مۇرىخەتتىكىيى يېرىكى

Acasure downstream of the attercoolar. Standard value

> 1 Measure between air cleaner and turixo intake 2 Standard value.

* 1

Appendix "C"

STUDENT'S t-TEST

t test: Two Sample Assu	ming Eq	ual Population Variances			
Company	1	MacMahon Contractors			
Site	(Giralambone			
Test:	τ	Intreated			
Record		kg Load	kg Fuel	kg Fuel/Tonne Load	Correction For Amb.
	1	106000	13.7263	0.1295	0.1317
	2	112000	14.3767	0.1284	0.1306
	3	119000	14.1930	0.1193	0.1213
	4	118000	14.2913	0.1211	0.1232
	5	114000	14.0719	0.1234	0.1256
	6	111000	13.3659	0.1204	0.1225
	7	114000	14.1006	0.1237	0.1258
	8	110000	13.4306	0.1221	0.1242
	9	124000	14.7384	0.1189	0.1209
	10	123000	14.5473	0.1183	0.1203
	11	127000	14.4237	0.1136	0.1155
	12	111000	13.2221	0.1191	0.1212
	13	115000	14.2211	0.1237	0.1258
	14	102000	13.6991	0.1343	0.1366
	15	123000	14.2065	0.1155	0.1175
	16	81000	11.2644	0.1391	0.1415
Mom		113125	13.97	0 1 2 2 1	0.1252
Mean .		113123	13.07	0.1251	0.1255
Sta Dev		10941.51117	0.820330727	0.000744720	0.006861369
Observations					16
Test:		FTC Treated			
Record		kg Load	kg Fuel		kg Fuel/Tonne Load
	1	97000	12.26	0.1264	0.1248
	2	100000	12.65	0.1265	0.1249
	3	114000	13.41	0.1177	0.1161
	4	116000	13.21	0.1139	0.1124
	5	102000	12.35	0.1211	0.1195
	6	112000	13.04	0.1165	0.1150
	7	125000	14.30	0.1144	0.1130
	8	116000	13.26	0.1143	0.1128
	9	112000	12.99	0.1160	0.1145
	10	112000	13.01	0.1161	0.1146
	11	130000	14.33	0.1102	0.1088
	12	121000	13.81	0.1141	0.1127
Mean		112364	13 17	0 1176	0 1158
Std Dev		9982,71233	0.673589447	0.00513948	0.004934616
Observations		>> .	0.07000000	0.00313740	12
		kg of Fuel/Tonne			
		Corrected For Amb.			
Mean % change	L	-7.6%			
Confidence Interval		99%			
Alpha		0.005			
Degrees Of Freedom		26			
t Critical Value	[2.779			
Hypothesis	-	$H_0: u_1 - u_2 = 0$			
	_	$H_1: u_1 - u_2 > 0$			
t=		4.06			
Conclusion					

Since t= 4.06, is outside the range +/- 2.779 we reject H₀ and accept H₁ and conclude that the difference between FTC treated and untreated test means are significant at a 99 % confidence level.